DEBATE WITH
GARY MARCUS

YOSHUA BENGIO

December 23rd, 2019, Mila, Montreal
MAIN POINTS

● Core challenge: OOD generalization
● Deep learning has made good progress on system 1, what extensions are needed for system 2?
● Attention mechanisms: key ingredient, opens door to dynamic recombination, systematic generalization, causal factorization of knowledge
● How is that different from sticking GOFAI algorithms on top of deep perception?
ON THE TERM DEEP LEARNING

- Deep learning is not a fixed architecture, training methodology
- It's not MLPs, Convnets, RNNs or backprop
- It is an evolving approach to build intelligent learning & generalizing machines inspired by the brain
- Gradually building a corpus of principles (priors) guiding the design of tens of thousands of papers, e.g.
 - Brains provide powerful architectural priors (e.g. neural architecture, neural nonlinearities, local connectivity, spatial representations, etc)
 - Learning as optimization (or multiple optimizations in game-theoretical setup, as in GANs), i.e. coordinated learning of multiple parts of the system (e.g. end-to-end, actor-critic, ...)
 - Gradient-based optimization (especially SGD) is extremely successful, especially for generalization
 - Distributed representations and depth provide powerful combinatorial priors
 - Sharing computation and representations across tasks, environments, etc enables multi-task learning, transfer learning, and learning to learn
 - Reasoning/search/inference can be implemented by energy-minimization and also approximated by deep nets

AGENT LEARNING NEEDS
OOD GENERALIZATION

Agents face non-stationarities

Changes in distribution due to
• their actions
• actions of other agents
• different places, times, sensors, actuators, goals, policies, etc.

Multi-agent systems: many changes in distribution
Ood generalization needed for continual learning
Different forms of compositionality each with different exponential advantages

- Distributed representations
 (Pascanu et al ICLR 2014)

- Composition of layers in deep nets
 (Montufar et al NeurIPS 2014)

- Systematic generalization in language, analogies, abstract reasoning? TBD
 (Lee, Grosse, Ranganath & Ng, ICML 2009)
SYSTEMATIC GENERALIZATION

• Studied in linguistics

• **Dynamically recombine existing concepts**

• Even when new combinations have 0 probability under training distribution

 • E.g. Science fiction scenarios

 • E.g. Driving in an unknown city

• Hot topic in DL research

(Lake & Baroni 2017)
(Bahdanau et al & Courville ICLR 2019)
CLOSURE: ongoing work by Bahdanau et al & Courville on CLEVR
FROM ATTENTION TO INDIRECTION

• Attention = dynamic connection
• Receiver gets the selected value
• Value of what? From where?
 → Also send ‘name’ (or key) of sender
• Keep track of ‘named’ objects: indirection
• Manipulate sets of objects (transformers)
Attention: to form conscious state, thought

A thought is a low-dimensional object, few selected aspects of the unconscious state

Need 2 high-level states:
- Large unconscious state
- Tiny conscious state

Part of inference mechanism wrt joint distribution of high-level variables
CONSCIOUSNESS PRIOR \(\rightarrow\) SPARSE FACTOR GRAPH

Bengio 2017, arXiv:1709.08568

- Property of **high-level variables** which we **manipulate** with language:
 we can predict some given very few others

 - E.g. "if I drop the ball, it will fall on the ground"

- **Disentangled factors** \(\neq\) marginally independent, e.g. ball & hand

- **Prior**: sparse factor graph joint distribution between high-level variables, consistent with inference mechanism which looks at just a few variables at a time.

Prior puts pressure on encoder

unconscious state

encoder

input \(x\)
WHAT CAUSES CHANGES IN DISTRIBUTION?

Hypothesis to replace iid assumption:
changes = consequence of an intervention on few causes or mechanisms (usually by an agent)

Extends the hypothesis of (informationally) Independent Mechanisms (Scholkopf et al 2012)

➔ local inference or adaptation in the right model
➔ good ood generalization/fast transfer/small ood sample complexity (Bengio et al ICLR 2020)

Underlying physics: actions are localized in space and time.
RIMS: MODULARIZE COMPUTATION AND OPERATE ON SETS OF NAMED AND TYPED OBJECTS

Recurrent Independent Mechanisms

Multiple recurrent sparsely interacting modules, each with their own dynamics, with object (key/value pairs) input/outputs selected by multi-head attention

Results: better ood generalization

Builds on rich recent literature on object-centric representations (mostly for images)
PRIORS FOR LEARNING HIGH-LEVEL SEMANTIC REPRESENTATIONS

- Consciousness prior: sparse factor graph
- Dependencies (rules/constraints) are shared (variables vs instances)
- HL variables tend to be causal
- HL variables tend to refer to agents, objects or actions
- Distributional changes arise from localized causal interventions (in semantic space)
- Different pieces of knowledge, w/ different stability/time scales
CONTRAST WITH THE SYMBOLIC AI PROGRAM

Avoid pitfalls of classical AI rule-based symbol-manipulation

• Need efficient & coordinated large-scale learning
• Need semantic grounding in system 1 and perception-action loop
• Need distributed representations for generalization
• Need efficient = trained search (also system 1)
• Need uncertainty handling

But want

• Systematic generalization
• Factorizing knowledge in small exchangeable pieces
• Manipulating variables, instances, references & indirection
MY BET: NOT A SIMPLE HYBRID OF GOFAI & DEEP NETS

Why? Many reasons:
(1) you need learning in the system 2 component as well as in the system 1 part,
(2) high-level abstract concepts need to be grounded and have distributed representations to achieve generalization
(3) you need to represent uncertainty there as well
(4) brute-force search (the main inference tool of symbol-processing systems) does not scale, instead humans seem to use unconscious (system 1) processing to guide the search involved in reasoning, so system 1 and system 2 are very tightly integrated
(5) your brain is a neural net all the way
EXPLICIT OR IMPLICIT SYMBOLS?

My bet: DL implementing some of the functionalities of symbols

- Categories: multimodality of representation distribution, multiple manifolds, Gumbel softmax, inhibitory connections for competing attractors
- Indirection & variables: via attention & dynamic routing of information
- Recursion: via recurrent processing dynamically calling the same or different computational modules
- Context independence: only to some extent, using rich distributed representations of type and context, systematic generalization via dynamically activated combinations of mechanisms
Let’s Debate!